Perhaps you don't want discouraging news about electronic health records. If that's the case, browse on to another site. However, the authors of this new paper have some important things to say. And they have the expertise to be credible, being part of the National Center for Human Factors in Healthcare.
The short version is that EHRs have not been designed with sufficient attention to human factors and therefore are likely to be not as usable as they should be and--I extrapolate--have the potential to cause harm.
First, some background on the topic:
The usability of any device or system can be broken down into two major categories: basic interface design (human factors [HF] 1.0) and cognitive support of the user (HF 2.0). The basic interface design should follow well-established principles that ensure information is clear and readable, such as font size and color, while also providing adequate contrast between text and the background. Focused on the cognitive support of the user, HF 2.0 entails much greater detail and a deep understanding of the workflow and cognitive needs of the user. Designers focusing on HF 2.0 principles seek to understand how users accomplish their work in the context of their actual work environment (e.g., observations, task analysis, and other ethnographic techniques) and engage in iterative user testing of the interface throughout the development process.
Next, an assessment of the "state of the art:"
We are . . . concerned about the lack of progress in addressing HF 2.0 challenges. Nearly all EHR vendors, both large and small, struggle with the challenge of designing for numerous permutations of workflows, clinical specialties, and physical environments in which their EHRs are deployed.( Yet these systems must be designed with the cognitive needs of the frontline users in mind for each specialty and each user role (physician, nurse, tech, clerk, etc.). For example, an HF 1.0 patient discharge tool may have the necessary textbox fields that allow the provider to enter all of the important discharge instructions. But an interface incorporating HF 2.0 design principles would ensure easy access and display of relevant nursing notes, changes in patient status and vital signs, automatically highlight abnormal test results, and suggest follow-up information based on those results. In current systems, abnormal findings and change in a patient's status are easily missed during the discharge process, despite the fact that the information is contained somewhere in the EHR, just not presented in a meaningful way to the user.
Recommendatons:
To do this well, EHR vendors, health care systems, and frontline health care workers need to partner so that all can deeply appreciate the intersection between the technology and the users and design the system accordingly. These efforts must leave adequate time for testing the systems during the development process, and should not be rushed after the system is built and ready to be implemented.
From our experience in studying EHRs and their implementations, we believe that health care systems and vendors would be well served by a library of lessons learned and use cases that they can draw upon to design and install their systems. Too often, health care systems undertaking a new EHR installation find themselves reinventing the wheel and repeating the same mistakes and missteps that another institution made previously. This is neither sustainable, nor desirable when it comes to implementing safe and efficient health IT systems.
The short version is that EHRs have not been designed with sufficient attention to human factors and therefore are likely to be not as usable as they should be and--I extrapolate--have the potential to cause harm.
First, some background on the topic:
The usability of any device or system can be broken down into two major categories: basic interface design (human factors [HF] 1.0) and cognitive support of the user (HF 2.0). The basic interface design should follow well-established principles that ensure information is clear and readable, such as font size and color, while also providing adequate contrast between text and the background. Focused on the cognitive support of the user, HF 2.0 entails much greater detail and a deep understanding of the workflow and cognitive needs of the user. Designers focusing on HF 2.0 principles seek to understand how users accomplish their work in the context of their actual work environment (e.g., observations, task analysis, and other ethnographic techniques) and engage in iterative user testing of the interface throughout the development process.
Next, an assessment of the "state of the art:"
We are . . . concerned about the lack of progress in addressing HF 2.0 challenges. Nearly all EHR vendors, both large and small, struggle with the challenge of designing for numerous permutations of workflows, clinical specialties, and physical environments in which their EHRs are deployed.( Yet these systems must be designed with the cognitive needs of the frontline users in mind for each specialty and each user role (physician, nurse, tech, clerk, etc.). For example, an HF 1.0 patient discharge tool may have the necessary textbox fields that allow the provider to enter all of the important discharge instructions. But an interface incorporating HF 2.0 design principles would ensure easy access and display of relevant nursing notes, changes in patient status and vital signs, automatically highlight abnormal test results, and suggest follow-up information based on those results. In current systems, abnormal findings and change in a patient's status are easily missed during the discharge process, despite the fact that the information is contained somewhere in the EHR, just not presented in a meaningful way to the user.
Recommendatons:
To do this well, EHR vendors, health care systems, and frontline health care workers need to partner so that all can deeply appreciate the intersection between the technology and the users and design the system accordingly. These efforts must leave adequate time for testing the systems during the development process, and should not be rushed after the system is built and ready to be implemented.
From our experience in studying EHRs and their implementations, we believe that health care systems and vendors would be well served by a library of lessons learned and use cases that they can draw upon to design and install their systems. Too often, health care systems undertaking a new EHR installation find themselves reinventing the wheel and repeating the same mistakes and missteps that another institution made previously. This is neither sustainable, nor desirable when it comes to implementing safe and efficient health IT systems.
Health systems should rigorously test EHR systems through in-house usability labs or independent third party organizations before purchasing. EHR vendors should also demonstrate that users will be able to operate the EHR system in the way in which it was intended.
ReplyDelete